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The higher moments of a distribution often lead to estimated value-at-risk (VaR) biases. This study's objective is
to examine the backtesting of VaR models that consider the higher moments of the distribution for minimum-
variance hedging portfolios (MVHPs) of the stock indices and futures in the Greater China Region for both
short and long hedgers. The results reveal that the best backtesting VaR for theMVHP considered both the higher
moments of the MVHP distribution and the asymmetry in volatility, cross-market asymmetry in volatility, and
level effects in the covariance matrix of assets in theMVHP. These empirical results provide references for inves-
tors in risk management.
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1. Introduction

The occurrence of numerous incidents related to inappropriate risk
management, such as those involving the Orange County government
and JP Morgan Chase and Co., have motivated companies to emphasize
riskmanagement and profitability. Furthermore, the implementation of
the Basel II Accord by the Basel Committee on Banking Supervision at
the Bank for International Settlements signifies the determination that
risk management methods have become a central issue for financial in-
stitutions and companies globally.

Ensuring accuracy is the main issue in applying value-at-risk (VaR)
models. In 1996, the Basel Committee on Banking Supervision amended
the Basel Accord to require that banks approximate suitable capital
adequacy using an internal VaR model and conduct backtests to assess
themodel's reliability.Whenasset returnsdisplayheavy tails or skewness,
t distribution outperforms normal distribution for estimating VaR. Chong
(2004) and So and Yu (2006) discovered that t distributions can
better capture heavy tails in asset returns. However, t distributions
underperform asset returns in identifying skewness. Thus, Favre
and Galeano (2002) proposed a mean-modified VaR optimization model
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that utilizes the higher moments of the distribution to capture both
heavy tails and skewness. Favre and Galeano (2002) also found that
amean-modifiedVaR optimizationmodel is necessary for VaR estimation.

The volatility clustering that is common in financial data can be
identified using a univariate generalized autoregressive conditional
heteroskedasticity (GARCH) model (Baillie and Myers, 1991; Bollerslev,
1986; Engle, 1982). However, the inability of the GARCH model to
capture asymmetry in volatility led Glosten et al. (1993) to develop
the univariate Glosten, Jagannathan and Runkle (GJR) model. Pochon
and Teiletche (2007) and Mokni et al. (2009) have reported that, in
addition to the better capturing asymmetry in volatility, the VaR perfor-
mance of the GJR model was superior to that of the GARCH model.
However, interactions between asymmetry in volatility have commonly
occurred in the asset returns of hedging portfolios; therefore, re-
searchers proposed the bivariate asymmetric diagonal VECH (ADVECH)
model to capture the asymmetry in and cross-market asymmetry
in volatility in the covariance matrix of assets in the portfolio (Cotter
and Hanly, 2012; De Goeij and Marquering, 2004). In addition, the
vector error correction (VEC) model can solve the problem of long-
term information loss when taking the difference of time series. Thus,
Chuang et al. (2012) proposed the multivariate VEC-ADVECH model
that can simultaneously reveal long-term deviations among variables
in mean equations and the asymmetry in volatility, the cross-market
asymmetry in volatility in the covariancematrix of assets in the hedging
portfolio.
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Table 1
Comparison of model specifications and parameter restrictions.

Model γ α2 α3 α4

VEC-DVECH 0 0 0 0
VEC-ADVECH 0 Unrestricted Unrestricted Unrestricted
VEC-DVECH-L Unrestricted 0 0 0
VEC-ADVECH-L Unrestricted Unrestricted Unrestricted Unrestricted

Note: VEC-DVECH denotes a multivariate DVECH model with a vector error correction
term. VEC-ADVECH represents a multivariate ADVECH model with a vector error correc-
tion term. VEC-DVECH-L is a multivariate DVECH-L model with a vector error correction
term. VEC-ADVECH-L denotes a multivariate ADVECH-L model with a vector error
correction term.
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The level effect refers to the influence of asset returns on volatility,
and the predictive ability of models that consider that the level effect
is superior to those of models that fail to consider it. De Goeij and
Marquering (2009) extended the multivariate ADVECH model of De
Goeij and Marquering (2004) into the multivariate level ADVECH
(ADVECH-L) model, which can simultaneously identify level effects,
asymmetry in volatility, and cross-market asymmetry in volatility in
the covariance matrix of assets. However, few studies have considered
the use of the multivariate VEC-ADVECH-L model to investigate the
VaR performance of minimum-variance hedging portfolios (MVHPs).

In situations with heavy tails or skewness in returns on assets, using
higher moments of the distribution to estimate the VaR can improve
the VaR performance. This study refers to Johnson's hypotheses
(1960) to establish the MVHP of themultivariate time-variant volatility
model for stock indices and derived futures in the Greater China Region
(i.e., the Hang Seng, Taiwan, and Shanghai A-share stock indices and fu-
tures) for short and long hedgers. Additionally, this study compares
backtesting VaR performance for the MVHP both considering and with-
out considering the higher moments of the MVHP distribution on the
likelihood ratio test of Kupiec (1995) and the conditional coverage
test of Christoffersen (1998).

The main contribution of the study shows, for short and long
hedgers, that the backtesting for VaR performances that considers the
higher moments of the distribution for theMVHPwere consistently su-
perior to performances of the model that does not consider the higher
moments of the distribution for theMVHP. Additionally, the backtesting
showed that the best VaR performance for the MVHP was from the
model that considered the higher moments of the MVHP distribution
and the asymmetry in volatility, cross-market asymmetry in volatility,
and the level effects in the covariance matrix of assets in the MVHP,
whereas the backtesting also showed that the worst VaR performance
for the MVHP was from a model that does not consider any of the fore-
going. The study results might provide a comprehensive account of
portfolio theory.

The remainder of this study is organized as follows. Section 2
describes the data and model. Section 3 summarizes the empirical
results. And, section 4 presents conclusions and suggestions.

2. Data and model

2.1. Data selection and sources

In 1993, the World Bank and the International Monetary Fund offi-
cially listed Taiwan, Hong Kong, and Mainland China as an economic
unit. This study thus focuses on the stock indices and derived futures
in the Greater China Region (i.e., the Hang Seng, Taiwan, and Shanghai
A-share stock indices and futures). The data closing of stock indices
and futures cover fromMay 14, 2010 to December 30, 2011, and the re-
search sample is 402 observations. The data is from the Datastream da-
tabase. Returns were calculated as the first difference in the natural
logarithm of daily closing prices and multiplied by 100.

A rolling-window framework is used to calculate the hedge ratios of
the MVHP. Observed values from date 1 to date n were first used to es-
timate the parameters of the variant multivariate time-variant volatility
models and then to calculate the hedge ratio of theMVHP at date n+ 1.
Subsequently, the observed values from date 2 to date n+ 1were used
to estimate the parameters of the variant multivariate time-variant vol-
atility models and then to calculate the hedge ratio of theMVHP at date
n+2. This approachwas continued until the hedge ratio of theMVHPat
the last date was calculated.

2.2. Multivariate VEC-ADVECH-L model

In themultivariate VEC-ADVECHmodel established by Chuang et al.
(2012), VEC is a vector error correction, which links the long-term
equilibrium relationship that is implied by cointegration with the
short-term dynamic adjustment mechanism that describes how
variables react when they move out from the long-term equilibrium.
In addition to sharing the characteristics of the GJR model, the
ADVECH model can identify cross-market asymmetry in volatility. Em-
bedding the level effect, the multivariate VEC-ADVECH model (simply
referred to as the VEC-ADVECH-Lmodel hereafter) yields the following:

ri;t ¼ ai þ biri;t−1 þ ci lnP1;t−1−κ−δ lnP2;t−1
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where Eq. (1) represents themean equation for returns on asset i and ri,t
represents the returns on asset i at time t. The speed of adjustment to-
ward equilibrium is determined by the magnitude of ci. Moreover,
Eq. (2) is the conditional covariance of the returns on assets i and j at
time t. Moreover, α1ij captures the interaction effect of shocks between
returns on assets i and j at time t-1. Thus, α2ij captures the asymmetric
interaction effect of return shocks between assets i and j at time t-1.
If εk,t − 1 b 0, Iεk;t−1

is defined as 1; otherwise, it is 0. Additionally, βij de-
notes the effects of the conditional covariance of returns on assets i and j
at time t-1. In addition,α3ij andα4ij represent the effects of cross-market
asymmetry in volatility. Moreover, γij is used to capture the impact of
level effects. Consequently, if γij is not 0, the conditional covariance is
determined by the product of returns on assets i and j as well as and in-
formation shocks. The larger γij is, the more level effects are. If γij is 0,
the conditional covariance is only determined by information shocks
i.e., it is the VEC-ADVECH model. Eqs. (3) and (4) are based on the dy-
namic conditional correlation proposed by Tsay (2009), where ρij,t rep-
resents the dynamic conditional correlation coefficient of returns on
assets i and j at time t. Additionally, qij,t denotes the covariance between
returns on assets i and j at time t, whereas ϖ1 represents the inter-
temporal persistence of the dynamic conditional correlation coefficient
of returns on assets i and j. Furthermore,ϖ2 denotes the dynamic con-
ditional correlation coefficient between returns on assets i and j that is
influenced by normalization shocks at time t-1. Finally, Table 1 com-
pares the specifications of the models and the parameter-related
restrictions.



Table 3
Average hedge ratios of the MVHP.

Model Hang Seng Taiwan Shanghai A

Panel A: without considering the higher moments of the MVHP distribution.
VEC-DVECH 0.9529 0.8984 0.9117
VEC-ADVECH 0.9102 0.8114 0.8114
VEC-DVECH-L 0.9106 0.8427 0.8427
VEC-ADVECH-L 0.9107 0.7916 0.7029

Panel B: considering the higher moments of the MVHP distribution.
VEC-DVECH 0.9414 0.8903 0.8903
VEC-ADVECH 0.9217 0.6962 0.6969
VEC-DVECH-L 0.9234 0.7812 0.7585
VEC-ADVECH-L 0.8988 0.7055 0.7608

Note: VEC-DVECH is a multivariate DVECH model with a vector error correction term.
VEC-ADVECH denotes a multivariate ADVECH model with a vector error correction
term. VEC-DVECH-L represents a multivariate DVECH-Lmodel with a vector error correc-
tion term. VEC-ADVECH-L denotes a multivariate ADVECH-L model with a vector error
correction term.
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Because the log likelihood function is a nonlinear function of the pa-
rameters in the empirical model, this study used the BHHH algorithm
that was proposed by Berndt et al. (1974) to obtain the maximum like-
lihood estimates of the parameters.

2.3. VaR model for MVHP of short and long hedgers

Let βt be the hedge ratio of MVHP and let ri,t be the returns on asset i
at time t, then the returns of theMVHP at time t are rp,t = ri,t − βtrj,t for
short hedgers and rp,t = − ri,t + βtrj,t for long hedger. At a confidence
level of 1 − α, the VaR model for the MVHP of short hedgers is

VaRshort
p;t ¼ μp;t þ δ1−ασp;t ð5Þ

and the VaR model for the MVHP of long hedgers is

VaRlong
p;t ¼ μp;t þ δασp;t ð6Þ

where VaRp,tshort(VaRp,tlong) represents the VaR of theMVHP returns at time
t for short (long) hedgers, σp;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w

0∑w
p

is the standard deviation of
the MVHP returns at time t, and w and ∑ represent the weight vector
and covariance matrix of the various asset returns in theMVHP, respec-
tively.When the highermoments of theMVHP distribution are ignored,
δα is set as the αth percentile of the standard normal distribution. This
study sets α as 1% and 5%. When the higher moments of the MVHP dis-
tribution are considered, we follow the approach of themean-modified
VaR optimizationmodel proposed by Favre andGaleano (2002) (simply
labeled the FG model hereafter), setting δα as

δα ¼ zα þ 1=6ð Þ z2α−1
� �

Sp þ 1=24ð Þ z3α−3zα
� �

Kp− 1=36ð Þ
� 2z3α−5zα
� �

S2p; ð7Þ

where zα represents the αth percentile of the standard normal distribu-
tion, and Sp and Kp represent the skewness and kurtosis of the MVHP
returns, respectively. Pochon and Teiletche (2007) list the δα values
under different levels of significance.

The likelihood ratio test of Kupiec (1995) is used to compare the
backtesting of the VaR performance for the MVHP from variant multi-
variate time-variant volatility models in this study. However, the num-
bers failure seriesmay be clustered, and the conditional coverage test of
Table 2
Summary of statistics.

Statistics Hang Seng Taiw

Stock
index

Futures Stoc

Mean −0.0426 −0.0396 −0
Standard deviation 1.4139 1.4390 1
Skewness −0.3213 −0.1923 −0
Excess kurtosis 4.8402 3.9239 1
Jarque–Bera 63.4804b 16.7347b 68
LB Q (12) 16.4090a 17.0850b 31
LB Q2(12) 57.5640b 54.1410b 66
SBT 0.9905

(1.9476)
3.78160a

(1.6942)
9

(1.9
NSBT 2.0041

(1.9466)
0.3701

(1.7031)
27

(1.8
PSBT 0.8075

(1.9496)
1.0750

(1.7016)
3

(1.9
JT 84.6751a 105.7350a 103

2. LB Q (12) represents Ljung-Box Q test statistics of lag 12; the critical value is 26.217 (21.026
3. LB Q2 (12) refers to Ljung-Box Q test statistics of lag 12 for squared series; the critical value
4. SBT, NSBT, PSBT, and JT refer to the sign bias test (SBT), negative size bias test (NSBT), positive
distribution with 3° of freedom. The critical value is 7.82 at the 5% significant level.
5. The figures in brackets denote standard errors.

a Statistical significance at the 5% significant level.
b Statistical significance at the 1% significant level.
Christoffersen (1998), which is a joint test of unconditional coverage
and serial independence, is also used to compare the VaR performance
for the MVHP from the variant multivariate time-variant volatility
models in this study.

3. Empirical results

Table 2 lists the summary of statistics. At a significance level of 5%,
the Jarque–Bera test statistics of the stock indices and futures in the
Greater China Region did not support that any one follows normal dis-
tribution. Table 3 lists the hedge ratios of the MVHP for stock indices
and futures in the Greater China Region. Ignoring the higher moments
of theMVHP distribution, the hedge ratios of theMVHP ranged between
0.7029 and 0.9529.When the highermoments of theMVHPdistribution
were considered, the hedge ratios ranged between 0.6962 and 0.9414.
Regardless of whether the higher moments of the MVHP distribution
were considered, the hedge ratios of the MVHP were all below 1 and
above 0, which indicates the applicability of futures for hedging in the
Greater China Region.

After calculating the VaR values of theMVHP from variant multivar-
iate time-variant volatility models, this study employed the likelihood
ratio test from Kupiec (1995) and the conditional coverage test of
an Shanghai A

k index Futures Stock index Futures

.0342 −0.0341 −0.0882 −0.0941

.2524 1.3474 1.3534 1.5438

.3744 −0.3265 −0.5017 −0.3311

.8755 2.0549 1.5865 2.8027

.1398b 77.6775b 58.8795b 138.5696b

.9780 21.6390 15.8200 18.1770

.1260b 54.0330b 10.3970 11.6410

.6633b

565)
3.7519

(1.9943)
2.0548

(1.8798)
0.5474

(2.1774)
.4099b

783)
13.5797b

(1.9862)
1.6253

(1.7906)
0.0297

(1.9693)
.4939
335)

2.3483
(1.9862)

0.0050
(1.7906)

0.0021
(1.9693)

.0610a 90.2348a 92.2939a 75.9020a

1) at the 1% (5%) significant level.
is 26.217 (21.0261) at the 1% (5%) significant level.
size bias test (PSBT), and joint test (JT) proposed by Engle andNg (1993). JT is a chi-square



Table 4
Backtesting VaR for the MVHP of short hedgers.

Model Hedging portfolio Number of failures LRuc LRcc

1% 5% 1% 5% 1% 5%

Panel A: without considering the higher moments of the MVHP distribution.
VEC-DVECH HS 5 12 4.2930 1.3968 6.2905 3.0791

TW 8 13 12.4964 2.2305 13.6960 3.8340
SA 9 16 15.8091 5.6903 17.7114 7.4157

VEC-ADVECH HS 3 9 0.8336 0.0369 2.8314 1.5585
TW 6 10 6.6964 0.2834 8.4846 1.8049
SA 7 14 9.4469 3.2311 11.2128 4.9682

VEC-DVECH-L HS 4 7 2.3046 0.2775 3.7811 1.7744
TW 5 9 4.2930 0.0369 5.9835 1.7039
SA 6 12 6.6964 1.3968 8.4303 3.3462

VEC-ADVECH-L HS 2 5 0.0542 1.7263 2.0523 2.9059
TW 3 6 0.8336 0.8283 2.2148 2.5664
SA 4 10 2.3046 0.2834 4.2987 2.1958

Panel B: considering the higher moments of the MVHP distribution.
VEC-DVECH HS 4 11 2.3046 0.7428 3.9272 2.2314

TW 6 10 6.6964 0.2834 7.6962 2.2721
SA 8 14 12.4964 3.2311 14.1632 4.8836

VEC-ADVECH HS 2 7 0.0542 0.2775 2.0523 1.6080
TW 5 9 4.2930 0.0369 5.9712 1.9286
SA 6 11 6.6964 0.7428 8.6937 2.5130

VEC-DVECH-L HS 3 6 0.8336 0.8283 2.8336 1.8282
TW 4 7 2.3046 0.2775 4.3046 1.7744
SA 5 9 4.2930 0.0369 6.2864 1.7039

VEC-ADVECH-L HS 1 4 0.3334 3.0392 0.3334 4.6618
TW 2 4 0.0542 3.0392 1.1813 5.0348
SA 3 7 0.8336 0.2775 2.8314 1.7744

Note: 1. VEC-DVECH is a multivariate DVECH model with a vector error correction term. VEC-ADVECH denotes a multivariate ADVECH model with a vector error correction term. VEC-
DVECH-L represents a multivariate DVECH-L model with a vector error correction term. VEC-ADVECH-L denotes a multivariate ADVECH-L model with a vector error correction term.
2. HS, TW, and SA denote the Hang Seng, Taiwan, and Shanghai A stock indices and futures portfolios, respectively.
3. The boldface numerics in the table indicate no significance at their corresponding levels determined through backtesting.
4. LRuc denotes the likelihood ratio test, which is a chi-square distribution with 1° of freedom. The critical value is 6.6349 (3.8415) at the 1% (5%) significant level.
5. LRcc denotes the conditional coverage test, which is a chi-square distributionwith 2° of freedom under null hypothesis. The critical value is 9.210 (5.992) at the 1% (5%) significant level.
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Christoffersen (1998) to perform backtesting for VaR performance.
Tables 4 and 5 list the backtesting VaR performances for the MVHP of
short and long hedgers, respectively. For both types of hedgers, consis-
tently fewer failures are generated when the higher moments of the
MVHP distribution are considered than when they are not considered,
which demonstrates that the VaR of the MVHP should consider the
higher moments of the MVHP distribution, and supports the conclu-
sions of Favre and Galeano (2002). Regardless of whether we consider
the higher moments of the MVHP distribution, the VEC-ADVECH
model passed the backtests. The ranking of backtesting VaR perfor-
mance among researched models is VEC-ADVECH-L, VEC-DVECH-L,
VEC-ADVECH, and the VEC-DVECH model in descending order on the
likelihood ratio test of Kupiec (1995) by means of pairwise compari-
sons. These results demonstrate the ability of the VEC-ADVECH model
to improve VaR performance and to capture asymmetry and cross-
market asymmetry in the volatility of the covariance matrix of assets
in the MVHP. These findings support the findings of Chuang et al.
(2012). Furthermore, models incorporating the level effect produced
fewer numbers of failures than those without level effect for both short
and long hedgers. This phenomenon demonstrates that backtesting
VaR performances for theMVHP should embed the level effect in the co-
variance matrix of assets in the MVHP.

Based on the conditional coverage test, the backtesting VaR that
does not consider the higher moments of the distribution for the
MVHP from the VEC-DVECH model is significant for short hedgers on
the Shanghai A-share stock index and futures at the 5% significant
level. By contrast, the backtesting VaR that considers higher moments
of the distribution for theMVHP from the VEC-DVECHmodel is not sig-
nificant for short hedgers. This indicates that the failure numbers of the
backtesting VaR that considers the higher moments of the distribution
for the MVHP from the VEC-DVECH model were serially independent
and not clustered.
Generally, the conclusions are identical for short and long hedgers in
the backtesting VaR performances for the MVHP for the Hang Seng,
Taiwan and Shanghai A-share stock indices and futures. The backtesting
VaR performance that considers the higher moments of the distribution
for the MVHPwere better than those of the MVHP that do not consider
the highermoments of the distribution. Furthermore, the backtesting of
the VaR performances of the MVHP in the variant multivariate time-
variant volatility models that considered asymmetry in volatility in
the covariance matrix of assets in the MVHP were superior to those
that have no asymmetry in volatility. Additionally, the backtesting of
the VaR performance for the MVHP in the variant multivariate time-
variant volatility models with level effects in the covariance matrix of
assets in the MVHP were better than those of the MVHP that have no
level effect in covariance matrix of assets in the MVHP. Among the
models discussed in this study, backtesting of the VaR performance
that considered the higher moments of distribution for the MVHP
from theVEC-ADVECH-Lmodel is the best one for theMVHP.Moreover,
themodel that does not consider the highermoments of distribution for
theMVHP from the VEC-DVECHmodel performed theworst one for the
MVHP in backtesting.

4. Conclusions and suggestions

This study was in backtesting VaR that considers the higher mo-
ments of the distribution for the MVHP of the daily stock index and fu-
tures in the Greater China Region. This study constructed the MVHP
from the variantmultivariate time-variant volatilitymodels for stock in-
dices and derived futures. Furthermore, we performed the likelihood
ratio of Kupiec (1995) and conditional coverage tests of Christoffersen
(1998) to backtest the VaR that considered the higher moments of the
MVHP from the variant multivariate time-variant volatility models for
short and long hedgers.



Table 5
Backtesting VaR for the MVHP of long hedgers.

Model Hedging portfolio Number of failures LRuc LRcc

1% 5% 1% 5% 1% 5%

Panel A: without considering the higher moments of the MVHP distribution.
VEC-DVECH HS 8 16 12.4964 5.6903 14.3434 7.5749

TW 8 17 12.4964 7.1312 13.4224 8.7771
SA 10 19 19.3569 10.3993 21.2642 12.1116

VEC-ADVECH HS 5 10 4.2930 0.2834 6.2864 1.8816
TW 6 8 6.6964 0.0257 7.6962 1.4724
SA 8 10 12.4964 0.2834 14.3434 1.9815

VEC-DVECH-L HS 4 8 2.3046 0.0257 4.3002 2.0136
TW 5 7 4.2930 0.2775 5.4711 1.8795
SA 7 9 9.4469 0.0369 10.7774 1.8031

VEC-ADVECH-L HS 3 7 0.8336 0.2775 2.2148 1.3039
TW 2 5 0.0542 1.7263 0.5068 2.3473
SA 4 8 2.3046 0.0257 3.9272 1.6966

Panel B: considering the higher moments of the MVHP distribution.
VEC-DVECH HS 6 14 6.6964 3.2311 7.9523 5.2133

TW 6 14 6.6964 3.2311 7.8561 5.1157
SA 8 17 12.4964 7.1312 13.9116 8.6291

VEC-ADVECH HS 4 9 2.3046 0.0369 3.9272 1.7475
TW 4 7 2.3046 0.2775 3.9272 1.6080
SA 6 9 6.6964 0.0369 7.8561 1.5585

VEC-DVECH-L HS 3 7 0.8336 0.2775 1.6453 0.9120
TW 3 6 0.8336 0.8283 2.8314 1.8282
SA 5 7 4.2930 0.2775 5.9835 1.8548

VEC-ADVECH-L HS 2 5 0.0542 1.7263 2.0542 3.4612
TW 1 4 0.3334 3.0392 2.3334 4.6618
SA 3 6 0.8336 0.8283 2.8297 2.6274

Note: 1. VEC-DVECH is a multivariate DVECH model with a vector error correction term. VEC-ADVECH denotes a multivariate ADVECH model with a vector error correction term. VEC-
DVECH-L represents a multivariate DVECH-L model with a vector error correction term. VEC-ADVECH-L denotes a multivariate ADVECH-L model with a vector error correction term.
2. HS, TW, and SA denote the Hang Seng, Taiwan, and Shanghai A stock indeces and futures portfolios, respectively.
3. The boldface numerics in the table indicate no significance at their corresponding levels determined through backtesting.
4. LRuc denotes the likelihood ratio test, which is a chi-square distribution with 1° of freedom. The critical value is 6.6349 (3.8415) at the 1% (5%) significant level.
5. LRcc denotes the conditional coverage test, which is a chi-square distributionwith 2° of freedom under null hypothesis. The critical value is 9.210 (5.992) at the 1% (5%) significant level.
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The backtesting VaR performance of the models that considered
the higher moments of the MVHP distribution were consistently supe-
rior to that of models that do not consider such higher moments of
the MVHP distribution for short and long hedgers. Additionally, the
best backtesting VaR performance for the MVHP was from the model
that considered the higher moments of the MVHP distribution and the
asymmetry in volatility, cross-market asymmetry in volatility, and
level effects in the covariance matrix of assets in the MVHP, and the
worst backtesting VaR was from a model that does not consider any of
the foregoing. When investors construct the MVHP for hedging, they
should consider the influences of asymmetry in volatility and cross-
market asymmetry in volatility, level effects in the covariance matrix
of assets in the MVHP. Moreover, to consider the higher moments
is an indispensable part of VaR estimation for the accuracy of risk
management.
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